Abstract

AbstractWe extend a new model for the kinetics of reversible addition‐fragmentation chain transfer (RAFT) polymerization. The essence of this model is that the termination of the radical intermediate formed by the RAFT process occurs only with very short oligomeric radicals. In this work, we consider cross‐termination of oligomers up to two monomers and an initiator fragment. This model accounts for the absence of three‐armed stars in the molecular weight distribution, which are predicted by other cross‐termination models, since the short third arm makes a negligible difference to the polymer's molecular weight. The model is tested against experiments on styrene mediated by cyano‐isopropyl dithiobenzoate, and ESR experiments of the intermediate radical concentration. By comparing our model to experiments, we may determine the significance of cross‐termination in RAFT kinetics. Our model suggests that to agree with the known data on RAFT kinetics, the majority of cross‐terminating chains are dimeric or shorter. If longer chains are considered in cross‐termination reactions, then significant discrepancies with the experiments (distinguishable star polymers in the molecular weight distribution) and quantum calculations will result. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3455–3466, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.