Abstract

Poly(N-acryloylmorpholine) (PNAM)-decorated waterborne nanoparticles comprising a core of either degradable polystyrene (PS) or poly(n-butyl acrylate) (PBA) were synthesized by polymerization-induced self-assembly (PISA) in water. A PNAM bearing a trithiocarbonate chain end (PNAM-TTC) was extended via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion copolymerization of either styrene (S) or n-butyl acrylate (BA) with dibenzo[c,e]oxepane-5-thione (DOT). Well-defined amphiphilic block copolymers were obtained. The in situ self-assembly of these polymers resulted in the formation of stable nanoparticles. The insertion of thioester units in the vinylic blocks enabled their degradation under basic conditions. The same strategy was then applied to the emulsion copolymerization of BA with DOT using a poly(ethylene glycol) (PEG) equipped with a trithiocarbonate end group, resulting in PEG-decorated nanoparticles with degradable PBA-based cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.