Abstract

BackgroundRaf kinase inhibitor protein (RKIP) regulates growth and differentiation and plays a role in key signal transduction cascades in mammalian cells. Nevertheless, the underlying mechanism for which RKIP regulates cell-cell adhesion remains unknown. Our study investigated the function of the RKIP overexpression on adhesion molecules expression induced by tumor necrosis factor (TNF)-α in cultured mouse vascular smooth muscle cells (MOVACs).Material/MethodsThe expression levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by ELISA kit, reverse transcription-PCR, and western blot assays. The protein expression of RKIP, p65, and inhibitor of nuclear factor (NF)-κBα (IκBα) were detected by western blot analysis. The activity of NF-kappaB was determined using a Dual-Luciferase Reporter assay.ResultsThe results showed that MOVACs transfected with pCMV5-HA-RKIP significantly inhibited TNF-α induced mRNA and protein expression of ICAM-1 and VCAM-1. The adhesion of THP-1 cells was also detected and inhibited by pCMV5-HA-RKIP in TNF-α-treated MOVACs. RKIP also suppressed the TNF-α-induced activation of NF-kappaB and the protein expression of phosphorylated IκB-α, and promoted the protein expression of IκB-α and nuclear translocation of p65 NF-kappaB. Furthermore, RKIP and the inhibitor of NF-kappaB (BAY11-7082) reduced the upregulation of ICAM-1 and VACM-1 induced by TNF-α.ConclusionsTaken together, these results suggested that RKIP may inhibit the TNF-α-induced expression of adhesion molecules in MOVACs through inactivation of the NF-kappaB pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.