Abstract

Most compressive imaging architectures rely on programmable light-modulators to obtain coded linear measurements of a signal. As a consequence, the properties of the light modulator place fundamental limits on the cost, performance, practicality, and capabilities of the compressive camera. For example, the spatial resolution of the single pixel camera is limited to that of its light modulator, which is seldom greater than 4 megapixels. In this paper, we describe a novel approach to compressive imaging that avoids the use of spatial light modulator. In its place, we use novel cylindrical optics and a rotation gantry to directly sample the Radon transform of the image focused on the sensor plane. We show that the reconstruction problem is identical to sparse tomographic recovery and we can leverage the vast literature in compressive magnetic resonance imaging (MRI) to good effect. The proposed design has many important advantages over existing compressive cameras. First, we can achieve a resolution of N × N pixels using a sensor with N photodetectors; hence, with commercially available SWIR line-detectors with 10k pixels, we can potentially achieve spatial resolutions of 100 megapixels, a capability that is unprecedented. Second, our design is scalable more gracefully across wavebands of light since we only require sensors and optics that are optimized for the wavelengths of interest; in contrast, spatial light modulators like DMDs require expensive coatings to be effective in non-visible wavebands. Third, we can exploit properties of line-detectors including electronic shutters and pixels with large aspect ratios to optimize light throughput. On the ip side, a drawback of our approach is the need for moving components in the imaging architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.