Abstract
Hypersonic maneuvering target can cause complex range migration and Doppler frequency migration effects even in a very short time. This brings a big challenge to the common long-time coherent integration based target detection methods. To solve this problem, a novel hypersonic maneuvering target detection method called Radon-S transform is proposed in this paper on the basis of Radon transform and S-transform. It performs the coherent integration along the target track on the time–range plane, and then performs the non-coherent integration along the time–frequency curve of target echo on the time–frequency plane. By combining the two energy integration processes, the signal-to-noise/clutter ratio can be effectively improved. The definition of Radon-S transform, the concrete realization of detection process, and the setting of correlative parameters are introduced in detail. Then the performance of Radon-S transform is analyzed in theory. Finally, numerical experiment results show that the proposed method is superior to some common long-time coherent integration methods in the hypersonic maneuvering target detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.