Abstract

The PandaX-4T distillation system, designed for the removal of krypton and radon from xenon, is evaluated for its radon removal efficiency using a 222Rn source during the online distillation process. The PandaX-4T dark matter detector is employed to monitor the temporal evolution of radon activity. To determine the radon reduction factor, the experimental data of radon atoms introduced into and bypassed the distillation system is compared. The results indicate that the PandaX-4T distillation system achieves a radon reduction factor exceeding 190 at the flow rate of 10 slpm and the reflux ratio of 1.44. Gas-only online distillation process of a flow rate of 20 slpm is also conducted without observing significant reduction of radon levels in the detector. This observation suggests that the migration flow of radon atoms from the liquid phase to the gas phase is limited, and the flow rate of gas circulation and duration of the process are insignificant compared to the total xenon mass of 5.6 tons in the detector. This study provides the experimental data to support the efficient removal of radon at ∼Bq level using the PandaX-4T distillation system, which is the prerequisite of the radon background control in the detector. The further operation with higher flow rate will be applied for the upcoming science run in PandaX-4T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call