Abstract
Radon-222 flux from representative sections of the United Nuclear St. Anthony open-pit mine complex was measured. The collected radon was adsorbed on activated charcoal and the radon activity was measured by gamma spectroscopy. System design, calibration, and the procedure to determine radon flux density (pCi/m/sup 2/.s) are described. A continuous series of radon flux densities were measured over a 5-month period at a control point in the mine. The average flux density at the control point was 1.9 pCi/m/sup 2/.s. A close correlation between radon flux density variations and changes in barometric pressure was observed by a comparison of meteorological data and average daily radon flux density measured at the control point. The release rate from each section of the mine was calculated from the average radon flux density and the area of the section, as determined from enlarged aerial photographs. The average radon flux density for eight locations over the ore-bearing section was 7.3 pCi/m/sup 2/.s. The average flux density for four locations over undisturbed topsoil was 0.17 pCi/m/sup 2/.s. The average Ra-226 content of ten samples taken from the ore-bearing region was 102 pCi/g ore. The ratio of radon flux density to radium content (specific flux) was 0.072. The release rate from the entire St. Anthony open pit was determined to be 3.5 x 10/sup 5/ pCi/s. This rate is comparable to the natural release of radon from one square mile of undisturbed topsoil. 16 refs., 31 figs., 11 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.