Abstract
A basic measure of the combinatorial complexity of a convexity space is its Radon number. In this paper we answer a question of Kalai, by showing a fractional Helly theorem for convexity spaces with bounded Radon number. As a consequence we also get a weak ε-net theorem for convexity spaces with bounded Radon number. This answers a question of Bukh and extends a recent result of Moran and Yehudayoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.