Abstract

We discuss some recent results concerning Radon measure-valued solutions of the Cauchy–Dirichlet problem for \partial_t u = \Delta\phi(u) . The function \phi is continuous, nondecreasing, with a growth at most powerlike. Well-posedness and regularity results are described, which depend on whether the initial data charge sets of suitable capacity (determined both by the Laplacian and by the growth order of \phi ), and on suitable compatibility conditions at \pm\infty .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.