Abstract

Robust and effective detection of a marine target is a challenging task due to the complex sea environment and target's motion. A long-time coherent integration technique is one of the most useful methods for the improvement of radar detection ability, whereas it would easily run into the across range unit (ARU) and Doppler frequency migration (DFM) effects resulting distributed energy in the time and frequency domain. In this paper, the micro-Doppler (m-D) signature of a marine target is employed for detection and modeled as a quadratic frequency-modulated signal. Furthermore, a novel long-time coherent integration method, i.e., Radon-linear canonical ambiguity function (RLCAF), is proposed to detect and estimate the m-D signal without the ARU and DFM effects. The observation values of a micromotion target are first extracted by searching along the moving trajectory. Then these values are carried out with the long-time instantaneous autocorrelation function for reduction of the signal order, and well matched and accumulated in the RLCAF domain using extra three degrees of freedom. It can be verified that the proposed RLCAF can be regarded as a generalization of the popular ambiguity function, fractional Fourier transform, fractional ambiguity function, and Radon-linear canonical transform. Experiments with simulated and real radar data sets indicate that the RLCAF can achieve higher integration gain and detection probability of a marine target in a low signal-to-clutter ratio environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call