Abstract
Radon is pervasive in our environment and the second leading cause of lung cancer induction after smoking. Therefore, the measurement of radon activity concentrations in homes is important. The use of charcoal is an easy and cost-efficient method for this purpose, as radon can bind to charcoal via Van der Waals interaction. Admittedly, there are potential influencing factors during exposure that can distort the results and need to be investigated. Consequently, charcoal was exposed in a radon chamber at different parameters. Afterward, the activity of the radon decay products 214Pb and 214Bi was measured and extrapolated to the initial radon activity in the sample. After an exposure of 1 h, around 94% of the maximum value was attained and used as a limit for the subsequent exposure time. Charcoal was exposed at differing humidity ranging from 5 to 94%, but no influence on radon adsorption could be detected. If the samples were not sealed after exposure, radon desorbed with an effective half-life of around 31 h. There is also a strong dependence of radon uptake on the chemical structure of the recipient material, which is interesting for biological materials or diffusion barriers as this determines accumulation and transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.