Abstract

We design a 3-bit adder or a radix-8 full adder (FA) in quantum-dot cellular automata (QCA), where the 3-bit carry propagation path can be accommodated in one clock-zone. To achieve this, we introduce group majority signals similar to group propagate and generate signals in parallel prefix computations, use them to reformulate the carry expressions of a previous radix-4 FA, and as such we could extend it to higher radix FAs. Applying the aforementioned new interpretation of carry expressions (via group majority signals) on 3-bit adders, results in that only a single clock cycle is required for 12-bit (vs. the previous 8-bit) carry propagation, across four radix-8 FAs. Based on the proposed radix-8 QCA-FA, we realized 8-, 16-, 32-, 64, and 128-bit QCA adders via QCADesigner. Comparison of these adders with the previous radix-4 experiment, showed 9–41% speed up, and 57–76% area saving, for 16–128-bit adders, respectively. On the other hand, compared to the best previous radix-2 design, for the same bit widths, we experienced 57–172% speed up, but at the cost of 138–4% area increase, except for the 64 and 128-bit cases, where we also experienced 19% and 41% area saving, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.