Abstract

The use of Raphanus sativus L. as a model crop for studies on plant response to environmental stresses is reviewed with emphasis on the effects of different atmospheric pollutants (O(3), SO(2), NO(2), acidic precipitation) and their combinations. Responses to temperature, light supply, water stress, and atmospheric CO(2) are also studied and discussed. In addition, the references reviewed are evaluated in terms of their experimental protocols on growth conditions and recommendations for optimal ranges of environmental and cultural variables, i.e. light, temperature, nutrient supply are given. Its distinct pattern of biomass partitioning, the small dimensions along with short and easy culture make radish an excellent experimental plant. The fleshy below-ground storage organ, formed by the hypocotyl and upper radicle, acts as the major sink during vegetative development. Abundant assimilate supply due to elevated levels of CO(2) along with high irradiation frequently promote hypocotyl growth more than shoot growth, whereas under conditions of stress shoot growth is maintained at the expense of the hypocotyl. This makes the hypocotyl: shoot ratio of radish a very sensitive and suitable indicator for various environmental stresses. Potential weaknesses and shortcomings of radish in its role as a model crop, particularly the high variability of injury and growth responses, are discussed along with possible solutions. Future research needs are derived from the summarized results presented and from some disparities among findings within the literature reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call