Abstract

Clarifying the influence of abiotic environmental factors on the glucosinolate-myrosinase complex in vegetables of the Brassicaceae is an important step in understanding physiological processes that affect crop quality. Previous related work in this lab has shown that irrigation timing in the field may influence physical-, chemical- and sensory-based indicators of cabbage quality. The objective of this study was to record glucosinolate concentrations and myrosinase activity in crop tissues from plants subjected to varying soil moisture levels, employing radish as a model. Plants of cv. Belle Glade were grown in a controlled environment system designed at the Ohio Agricultural Research and Development Center in Wooster, Ohio for maintenance of target soil moisture levels. Pots were maintained at three soil moisture ranges, 40% to 60% (A), 20% to 30% (B) and 10% to 20% (C) volumetric soil moisture content at 30 °C. Preliminary observations revealed that treatments A, B and C corresponded to soil tensions which were not stressful, moderately stressful, and severely stressful to plants, respectively. Pot evapotranspiration, leaf stomatal conductance and plant size followed the order A>B>C, while canopy temperatures followed the order C>B>A. In leaves, glucosinolate concentrations and myrosinase activity were about 15% greater in treatments B and C than in A, while glucosinolate levels and myrosinase activity were 28 and 50% lower in hypocotyls and roots, respectively, in C than in A. It is hypothesized that changes in enzyme and substrate synthesis and translocation within the plant in response to sub-optimal soil moisture levels may explain the differential response of tissue glucosinolate concentrations and myrosinase activity to soil moisture treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.