Abstract

Metal artifacts produce incorrect Hounsfield units and impact treatment planning accuracy. This work evaluates the use of single-energy metal artifact reduction (SEMAR) algorithm for treatment planning by comparison to manual artifact overriding. CT datasets of in-house 3D-printed spine and pelvic phantoms with and without metal insert(s) and two treated patients with metal implants were analysed. CT number accuracy improved with the use of SEMAR filter: root mean square deviation (RMSD) from reference (without metal) reduced by 35.4 in spine and 98.8 in hip. The plan dose volume histograms (DVHs) and dosimetric measurements showed comparable results. SEMAR reconstruction improved planning efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call