Abstract

Cleavage chemistry offers a new chance to activate chemotherapeutic prodrugs in a tumor-selective manner, yet developing spatiotemporally controllable cleavage chemistry with deep tissue penetration is still a great challenge. Herein, we present a novel radiotherapy-triggered cleavage chemistry that enables controlled drug release in tumors. Quaternary ammonium groups are identified as masking groups that can be efficiently removed by hydrated electrons (e-aq ) from water radiolysis. The subsequently released tertiary amines can be anti-cancer toxins or readily release functional molecules via 1,6-elimination. This radiotherapy-induced cleavage works successfully in living cells and tumor-bearing mice, showing remarkable treatment efficacy when the mice are given carfilzomib prodrug and radiotherapy. This strategy provides a new perspective for combinational radiochemotherapy, which is the first-line treatment for over 50 % of cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call