Abstract

Human bacterial infections significantly contribute to the increase in healthcare-related burdens. This scenario drives the study of novel techniques for the early and precise diagnosis of infectious processes. Some alternatives include Nuclear Medicine- and Molecular Imaging-based strategies. However, radiopharmaceuticals that are available for routine assessments are not specific to differentiating infectious from aseptic inflammatory processes. In this context, [68Ga]Ga-DOTA-Ubiquicidin29-41 was synthesized using an automated module and radiochemical; in vivo and in vitro studies were performed. The radiopharmaceutical remained stable in saline (up to 180 min) and in rodent serum (up to 120 min) with radiochemical purities > 99 and 95%, respectively. Partition coefficient and serum protein binding at 60 min were determined (-3.63 ± 0.17 and 44.06 ± 1.88%, respectively). Ex vivo biodistribution, as well as in vivo microPET/CT images in mice, showed rapid blood clearance with renal excretion and reduced uptake in other organs in Staphylococcus aureus-infected animals. Higher uptake was observed in the target as compared to the non-target tissue (p < 0.0001) at 60 min post administration. The presented in-human clinical case demonstrates uptake of the radiopharmaceutical by Staphyloccocus aureus bacteria. These results indicate the potential of [68Ga]Ga-DOTA-Ubiquicidin29-41 as a radiopharmaceutical that can be obtained in a hospital radiopharmacy for the diagnosis of infectious processes using PET/CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call