Abstract

The metabolic alterations in tumors make it possible to visualize the latter by means of positron emission tomography, enabling diagnosis and providing metabolic information. The alanine serine cysteine transporter-2 (ASCT-2) is the main transporter of glutamine and is upregulated in several tumors. Therefore, a good positron emission tracer targeting this transport protein would have substantial value. Hence, the aim of this study is to develop a fluorine-18-labeled version of a V-9302 analogue, one of the most potent inhibitors of ASCT-2. The precursor was labeled with fluorine-18 via a nucleophilic substitution of the corresponding benzylic bromide. The cold reference product was subjected to in vitro assays with [3 H]glutamine in a PC-3 and F98 cell line to determine the affinity for both the human and rat ASCT-2. To evaluate the tracer potential dynamic μPET, images were acquired in a mouse xenograft model for prostate cancer. The tracer could be synthesized with an overall nondecay corrected yield of 3.66 ± 1.90%. in vitro experiments show inhibitor constants Ki of 90 and 125 μM for the PC-3 and F98 cells, respectively. The experiments in the PC-3 xenograft demonstrate a low uptake in the tumor tissue. We have successfully synthesized the radiotracer [18 F]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino)butanoic acid. in vitro experiments show a good affinity for both the human and rat ASCT-2. However, the tracer suffers from poor in vivo tumor uptake in the PC-3 model. Briefly, we present the first fluorine-18-labeled derivative of compound V-9302, a promising novel ASCT-2 blocker used for inhibition of tumor growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.