Abstract
Pulse radiolysis measurements of the decay of hydrated electrons in solutions containing different concentrations of the oligonucleotide GTG with and without a cisplatin adduct show that the presence of a cisplatin moiety accelerates the reaction between hydrated electrons and the oligonucleotide. The rate constant of the reaction is found to be 2.23 × 10(10) mol(-1) L s(-1), which indicates that it is diffusion controlled. In addition, we show for the first time the formation of a Pt(I) intermediate as a result of the reaction of hydrated electrons with GTG-cisplatin. A putative reaction mechanism is proposed, which may form the basis of the radiosensitization of cancer cells in concomitant chemoradiation therapy with cisplatin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.