Abstract

NSCLC (non-small-cell lung cancer) is an aggressive form of lung cancer and accompanies high morbidity and mortality. This study investigated the function and associated mechanism of MMP10 during radiotherapy of NSCLC. MMP10 expression in patients and their overall survival rate were assessed through GEPIA. Protein expression was tested by western blotting. Radioresistance was detected in vitro by apoptosis and clonogenic assay. The extent of DNA damage and repair was revealed by the comet test and γH2AX foci test. High MMP10 levels in specimens of lung adenocarcinoma were related to poor patient outcomes. Clonogenic and apoptosis assays revealed that MMP10 knockdown in A549 cells initiated radiosensitization. Furthermore, MMP10 siRNA increased damage to the DNA in NSCLC cells, while MMP10 was observed to participate in DNA damage repair post-ionizing radiation. Thus, after irradiation, MMP10 plays an essential role in NSCLC through the repair pathway of DNA damage; regulating MMP10 for NSCLC radiosensitivity might have potential treatment implications in radiotherapy of NSCLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.