Abstract

Background: Radiation exposure is a concern in today’s world, given the widespread use of electronic devices and medical procedures involving ionizing and non-ionizing radiation. Radiations may cause male infertility by inducing oxidative stress in testicular tissue. Melatonin has antioxidant properties. Methods: We systematically reviewed the literature for the studies that have investigated the effects of melatonin therapy on radiation-induced oxidative stress in rodents’ testicular tissue. PubMed, Scopus, and Web of Science were searched for relevant animal trials. Standardized mean difference and 95% confidence intervals were used to pool the data. Subgroup and sensitivity analyses were done. The risk of bias was assessed using SYRCLE tool. Results: Outcomes: histopathology and sperm analyses (testicular apoptotic cells, Johnsen’s testicular biopsy score, seminiferous epithelial height, tubular diameter, sperm motility, viability, count, and morphology, concentration of spermatid, spermatocyte, and spermatogonia), body and testes weights (absolute and relative body and testicular weights), reproductive hormones (serum prolactin, FSH, and testosterone), and oxidative stress tissue markers (TBARS, CAT, GSH, GSH-Px, MDA, SOD, and XO, and total antioxidant capacity). Rats and mice were exposed to electromagnetic radiations (gamma, roentgen, microwave, radiofrequency, and high-power line energy) and particle waves (radioiodine and carbon-ion). Melatonin therapy was significantly associated with improved male reproduction. Conclusion: Radiation exposure harms male fertility, but melatonin, as an antioxidant, is potentially associated with improved male reproductive function in rodents. Inconsistencies in research require further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.