Abstract

The effective use of radiotherapy in cancer cure and palliation is compromised by the side-effects resulting from radiosensitivity of bordering normal tissues, which are invariably exposed to the cytotoxic effects of ionizing radiation during treatment. In this situation, use of radioprotective compounds that can protect normal tissues against radiation injury are of immense use. In addition to protecting normal tissue these compounds will also permit use of higher radiation doses to obtain better cancer control and possible cure. However, to date, no ideal radioprotectors are available as most synthetic compounds are toxic at their optimal concentrations and have produced little success in clinics. Radiation ill-effects are principally the result of generation of free radicals, and the antioxidant compounds that counter them are supposed to be of immense use in preventing them. In Ayurveda, the traditional Indian system of medicine, several plants have been observed to avert/ameliorate free radical-mediated ailments--an effect that has been documented--and such plants have recently been the focus of attention. Aegle marmelos (L.) Correa (Bael), commonly known as bael, has been used since antiquity for treating various ailments, some of which are now known to be the result of oxidative stress. In studies spanning nearly a decade, it has been observed that bael prevented radiation-induced ill-effects, and the results of these studies indicate that it has the potential to be an effective, nontoxic radioprotective agent. In this current review, for the first time, an attempt is made to summarize these observations and to discuss the plausible reasons responsible for bael's radioprotective effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call