Abstract

Introduction:Oxidative stress is a common factor in cataract. Considering the antioxidant properties of hesperidin as a flavanone glycoside from the flavonoid family with radioprotective effect, this study aimed to determine the protective effect of this flavanone glycoside on reducing oxidative stress in the eye lens tissue of mature rats caused by gamma irradiation.Materials and Methods:A total of 48 adult rats were randomly divided into six groups, namely, control, Dimethyl sulfoxide (DMSO), hesperidin, radiation, radiation + DMSO, and radiation + hesperidin. 15 Gy irradiation was carried out using Cobalt-60 teletherapy instrument with a source-to-surface distance of 80 cm at a dose rate of 98.5 cGy/min. 2 days following irradiation, we removed the rats' lenses and analyzed them to determine the effects of hesperidin.Results:The comparison of control and intervention groups after irradiation showed that malondialdehyde (MDA) level in the lens tissue was significantly higher in the irradiation groups than the control group. Furthermore, a significant difference between radiation and radiation + hesperidin groups were observed. The level of glutathione (GSH) in the lens tissue was significantly lower in the irradiation groups compared to the control group. Nonetheless, significant elevation of GSH in the radiation + hesperidin group compared to radiation group was seen.Conclusions:Radiation exposure reduced GSH and enhanced MDA levels in the lens tissue. However, GSH and MDA levels were modulated after hesperidin consumption. These results show the antioxidative properties of hesperidin in the lens and demonstrated that radiation complications such as cataract can be reduced by hesperidin through reducing oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.