Abstract

Abstract An experimental method for radiopacity evaluation of neurovascular implants is presented. State of the art methods are described for cardiovasular implants. To extend the methods to neurovascular devices, imaging parameters were determined from clinical radiography data sets and protocols. To reduce background noise, a thresholding method is introduced. This method is evaluated on a setup with four different laser cut and braided stents. The results are compared to current evaluation methods without filtering. It is shown that unfiltered methods underestimate the radiopacity by 0.89 mm ± 0.21 mm (aluminum equivalent). The introduced method is highly repeatable and uses modern clinical imaging technology. Thus an image evaluation under realisitc conditions is possible. Slightly visible vascular devices and implants can be compared with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call