Abstract
A combination of fiber and radio links would be attractive for efficient fronthauling to small cells and moving cells. However, achieving connectivity by using wired-wireless media converters significantly increases system complexity, power consumption, and latency. A seamless combination of fiber and radio links in which photonics-based technologies are used to generate and transmit radiowave signals is more suitable. In this article, we present an overview of fiber-radio link combination for mobile signal transmission. We propose an efficient solution for future mobile fronthauling based on the analog transmission of mobile signals over a bidirectional seamless system. We discuss the potential as well as the challenges and perspectives of the systems applied for mobile fronthauling in small-cell- and movingcell- based networks. We also present a proof-ofconcept demonstration of the transmission of mobile signals over the system. Satisfactory performance is obtained for different high-speed advanced signals. The transmission range over fiber links and the estimated range of the radio links are sufficiently long to facilitate the practical implementation of the system. The system is scalable to include new deployments of small cells and wireless services using wavelength-division and subcarrier multiplexing techniques. It can provide a high-speed, low-latency, and flexible solution for fronthauling in new emerging wireless systems such as 5G networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Wireless Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.