Abstract

This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p<0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% on LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y‐1 (2.2 μSv y‐1), deer bone = 3.8 mrem y‐1 (38 μSv y‐1), elk muscle = 0.12 mrem y‐1 (1.2 μSv y‐1), and elk bone = 1.7 mrem y‐1 (17 μSv y‐1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y‐1 (1000 μSv y‐1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E‐06, which is far below the Environmental Protection Agency upper level guideline of 1E‐04.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.