Abstract

Significant progress has been achieved on radionuclide transport in fractured rocks due to worldwide urgent needs for geological disposal of high-level radioactive waste (HLW). Transport models designed with accurately constrained parameters are a fundamental prerequisite to assess the long-term safety of repositories constructed in deep formations. Focusing on geological disposal systems of HLW, this study comprehensively reviews the behavoir of radionuclides and transport processes in multi-scale fractured rocks. Three issues in transport modeling are emphasized: 1) determining parameters of radionuclide transport models in various scales from laboratory- to field-scale experiments, 2) upscaling physical and chemical parameters across scales, and 3) characterizing fracture structures for radionuclide transport simulations. A broad spectrum of contents is covered relevant to radionuclide transport, including laboratory and field scale experiments, analytical and numerical solutions, parameter upscaling, and conceptual model developments. This paper also discusses the latest progress of radionuclide migration in multi-scale fractured rocks and the most promising development trends in the future. It provides valuable insights into understanding radionuclide transport and long-term safety assessment for HLW geological repository.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.