Abstract

Vertical distributions of (36)Cl and (99)Tc are presented from deep and shallow lysimeters above artificially controlled water tables for a 4-yr experiment from 1990 to 1993. Activity concentration profiles were all measured in late summer when a winter wheat (Triticum aestivum L. cv. Pastiche) crop was harvested. After harvest, activity concentrations in different organs of the crop were determined and crop uptake quantified as both an inventory ratio (IR) and a transfer factor (TF(w)), weighted to account for differential root and radionuclide distributions within the soil profile. Vertical distributions of radionuclides, crop roots within the soil, and IR and TF(w) values were each subjected to analysis of variance to estimate the individual and combined effects of soil depth and the year of the experiment on the results obtained. Chlorine-36 and (99)Tc exhibited highly significant variations in activity concentrations with soil depth and from year to year, indicating considerable physical mobility of both radionuclides. Soil-to-plant transfer was also high for both radionuclides compared with data obtained for gamma-emitting radionuclides. The IR values indicated that up to 40% of (36)Cl was incorporated in the crop's tissues at harvest, compared with a maximum of less than 1% for the less mobile gamma-emitting radionuclides. On the basis of the TF(w) values determined, (36)Cl uptake by winter wheat exceeded (99)Tc uptake, indicating that (36)Cl is highly bioavailable. Factors controlling the migration and bioavailability of both (36)Cl and (99)Tc in soils are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.