Abstract

In vitro studies using cell culture, including three-dimensional cultures without the involvement of tumor vessels, have limitations in simulating complex intratumoral hypoxic conditions in live subjects. To generate experimental hypoxic conditions closer to those observed in humans in clinical settings, in vivo studies are necessary. In addition, visible light generated via bioluminescence and fluorescence is generally unsuitable for in vivo experiments because of low tissue penetration. Furthermore, near-infrared light (NIR), which has the highest tissue penetration among lights of different wavelengths, cannot be assessed precisely in vivo because of the difficulty in correcting tissue absorption and scatter. For in vivo quantitative analyses, imaging modalities that use high tissue-penetrating signals, such as computed tomography (CT) using X-rays, radionuclide imaging using γ-rays, and magnetic resonance imaging (MRI) using electromagnetic waves, are ideal.Therefore, as an advanced protocol for this research purpose, we provide ex vivo and in vivo methods to investigate the genetic response of multiple copies of hypoxia response elements (HREs) to tumor hypoxia in terms of intensity and intratumoral distribution using a human sodium/iodide symporter (hNIS) reporter gene and radionuclide reporter probes (radioiodine and its chemical analog Tc-99m) based on our previous research. This protocol includes cloning an hNIS reporter construct with multiple copies of HREs, establishing stable cell lines of the reporter construct, preparing a mouse subcutaneous xenograft model, and evaluating the genetic response of multiple HREs to tumor hypoxia using digital autoradiography (ARG) ex vivo and using single-photon emission computed tomography (SPECT) or positron emission tomography (PET) in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call