Abstract

Artesian groundwaters of high radionuclide concentration are ubiquitous and may have provided the large, sustained energy sources that were required to drive the multistage process of DNA and primordial cell evolution. The rapid, early development of the genetic code as well as its degeneracy can be attributed to exceptionally high radiation-induced mutation rates in this unique environment. The ability of double-strand DNA to direct enzymatic repair of radiation damage to single strands contributed importantly to its selective evolution. It is postulated that the polymerization of nucleotides took place at elevated temperatures within alpha-particle tracks of high ion and free-radical density, followed by rapid quenching to ambient conditions. It also is evident that radiation resistance and ploidy were important selection factors in cellular evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.