Abstract
The biokinetics of eight radionuclides (241Am, 109Cd, 134Cs, 75Se, 54Mn, 110mAg, 65Zn, 60Co) absorbed from the aquatic medium by juvenile Russian sturgeon (Acipenser gueldenstaedtii) were experimentally determined in fresh (0.42‰) and brackish (9.0‰) waters, of a similar salinity range to the Caspian Sea, and in conjunction with chemical speciation modelling. Uptake and loss rate constants were determined for each radionuclide for a 14 day exposure at each salinity and during 28 days of exposure to radionuclide-free conditions. Whole body (wet): water concentration factors (CF) achieved over 14 days for these eight radionuclides were used in a comparison with the same radionuclide CFs previously determined experimentally for six species of marine teleosts and chondrichthyans, to further test a phylogeny-based model of multi-nuclide bioaccumulation based on marine chordates. Multivariate analyses (multidimensional scaling and hierarchical clustering) identified the relative affinities among these taxa and also those radionuclides which distinguished most between them, in their differing CFs. They consistently showed that sturgeon aggregated as a group, which was also slightly differentiated with salinity. Sturgeon were distinguished from all teleosts and chondrichthyans but were more dissimilar from chondrichthyans than teleosts, in accordance with sturgeon's different periods of divergence from them in evolutionary time. Variable salinity among experiments may also cause changes in radionuclide bioaccumulation due to variations in (i) bioavailability (ii) osmolarity, and (iii) competitive inhibition of a radionuclide's bioaccumulation by its stable analogue or metabolic model. Their potentially confounding effects on these patterns of radionuclide CFs among taxa were critically evaluated for those radionuclides which discriminated most between sturgeon and teleosts or chondrichthyans. Bioavailability, osmolarity and competitive inhibition effects were identified among salinity treatments, however they were not appreciable enough to override the phylogeny-based signal. The results of this study are thus consistent with a phylogeny-based model of radionuclide bioaccumulation by marine chordates being valid for a fish species living in lower salinity regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.