Abstract

Lymph node (LN) metastasis is significantly associated with worse prognosis for patients with intrahepatic cholangiocarcinoma (ICC). Improvement in preoperative assessment on LN metastasis helps in treatment decision-making. We aimed to investigate the role of radiomics-based method in predicting LN metastasis for patients with ICC. A total of 296 patients with ICC who underwent curative-intent hepatectomy and lymphadenectomy at two centers in China were analyzed. Radiomic features, including histogram- and wavelet-based features, shape and size features, and texture features were extracted from four-phase computerized tomography (CT) images. The clinical and conventional radiological variables which were independently associated with LN metastasis were also identified. A combined nomogram predicting LN metastasis was developed, and its performance was determined by discrimination, calibration, and stratification of long-term prognosis. The results were validated by the internal and external validation cohorts. Twenty-four radiomic features were selected into the nomogram. The established nomogram demonstrated good discrimination and calibration, with areas under the curve (AUCs) of 0.98 [95% confidence interval (CI) 0.96-0.99], 0.93 (0.88-0.98), and 0.89 (0.81-0.96) in the training and two validation cohorts, respectively. The 5-year overall survival (OS) and recurrence-free survival (RFS) rates of patients with high risk of LN metastasis as grouped by nomogram were poorer than those of patients with low risk in the training cohort (OS 28.8% versus 53.9%, p < 0.001; RFS 26.3% versus 44.2%, p = 0.001). Similar results were observed in the two validation cohorts. Radiomics-based method provided accurate prediction of LN metastasis and prognostic assessment for ICC patients, and might aid the preoperative surgical decision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.