Abstract
Purpose The aim of this study is to develop and compare performance of radiomics signatures using texture features extracted from noncontrast enhanced CT (NECT) and contrast enhanced CT (CECT) images for preoperative predicting risk categorization and clinical stage of thymomas. Materials and Methods Between January 2010 and October 2018, 199 patients with surgical resection and histopathologically confirmed thymoma were enrolled in this retrospective study. We extracted 841 radiomics features separately from volume of interest (VOI) in NECT and CECT images. The features with poor reproducibility and highly redundancy were removed. Then a least absolute shrinkage and selection operator method (LASSO) logistic regression model with 10-fold cross validation was used for further feature selection and radiomics signatures build. The predictive performances of radiomics signatures were assessed by receiver operating characteristic (ROC) analysis. The areas under the receiver operating characteristic curve (AUC) between radiomics signatures were compared by using Delong test. Result In differentiating high risk thymomas from low risk thymomas, the AUC, sensitivity, and specificity were 0.801(95% CI 0.740–0.863), 0.752 and 0.767 for radiomics signature based on NECT images, and 0.827 (95% CI 0.771 -0.884), 0.798, and 0.722 for radiomics signature based on CECT images. But there was no significant difference (p=0.365) between them. In differentiating advanced stage thymomas from early stage thymomas, the AUC, sensitivity, and specificity were 0.829 (95%CI 0.757-0.900), 0.712, and 0.806 for radiomics signature based on NECT images and 0.860 (95%CI 0.803-0.917), 0.699, and 0.889 for radiomics signature based on CECT images. There was no significant difference (p=0.069) between them. The accuracy was 0.819 for radiomics signature based on NECT images, 0.869 for radiomics signature based on CECT images, and 0.779 for radiologists. Both radiomics signatures had a better performance than radiologists. But there was significant difference (p = 0.025) only between CECT radiomics signature and radiologists. Conclusion Radiomics signatures based on texture analysis from NECT and CECT images could be utilized as noninvasive biomarkers for differentiating high risk thymomas from low risk thymomas and advanced stage thymomas from early stage thymoma. As a quantitative method, radiomics signature can provide complementary diagnostic information and help to plan personalized treatment for patients with thymomas.
Highlights
Thymomas are the most common primary neoplasms of anterior mediastinal masses, accounting for 47% of mediastinal neoplasms [1]
Our study focused on building radiomic signatures based on 3D texture analysis to differentiate high risk thymomas from low risk thymomas and advanced stage thymomas from early stage thymomas
In discriminating high risk thymomas from low risk thymomas, the AUCs were 0.801 for radiomics signature based on noncontrast enhanced CT (NECT) images and 0.827 for radiomics signature based on contrast enhanced CT (CECT) images
Summary
Thymomas are the most common primary neoplasms of anterior mediastinal masses, accounting for 47% of mediastinal neoplasms [1]. The Masaoka staging system based on anatomic extent of tumor and microscopic invasive properties of the tumor on surgical resection is the most widely used system in clinical practice [4]. These two systems have an important implication in determining treatment strategies and are considered to be independent prognostic factors [5,6,7,8]. Type B2 and type B3 thymomas had more invasive behavior compared with types A, AB, and B1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.