Abstract
BackgroundSpecific diagnosis and treatment of gastric cancer (GC) require accurate preoperative predictions of lymph node metastasis (LNM) at individual stations, such as estimating the extent of lymph node dissection. This study aimed to develop a radiomics signature based on preoperative computed tomography (CT) images, for predicting the LNM status at each individual station. MethodsWe enrolled 1506 GC patients retrospectively from two centers as training (531) and external (975) validation cohorts, and recruited 112 patients prospectively from a single center as prospective validation cohort. Radiomics features were extracted from preoperative CT images and integrated with clinical characteristics to construct nomograms for LNM prediction at individual lymph node stations. Performance of the nomograms was assessed through calibration, discrimination and clinical usefulness. ResultsIn training, external and prospective validation cohorts, radiomics signature was significantly associated with LNM status. Moreover, radiomics signature was an independent predictor of LNM status in the multivariable logistic regression analysis. The radiomics nomograms revealed good prediction performances, with AUCs of 0.716–0.871 in the training cohort, 0.678–0.768 in the external validation cohort and 0.700–0.841 in the prospective validation cohort for 12 nodal stations. The nomograms demonstrated a significant agreement between the actual probability and predictive probability in calibration curves. Decision curve analysis showed that nomograms had better net benefit than clinicopathologic characteristics. ConclusionRadiomics nomograms for individual lymph node stations presented good prediction accuracy, which could provide important information for individual diagnosis and treatment of gastric cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.