Abstract

PurposeTo investigate the value of multi-parametric MRI-based radiomics for preoperative prediction of lung metastases from soft tissue sarcoma (STS).MethodsIn total, 122 patients with clinicopathologically confirmed STS who underwent pretreatment T1-weighted contrast-enhanced (T1-CE) and T2-weighted fat-suppressed (T2FS) MRI scans were enrolled between Jul. 2017 and Mar. 2021. Radiomics signatures were established by calculating and selecting radiomics features from the two sequences. Clinical independent predictors were evaluated by statistical analysis. The radiomics nomogram was constructed from margin and radiomics features by multivariable logistic regression. Finally, the study used receiver operating characteristic (ROC) and calibration curves to evaluate performance of radiomics models. Decision curve analyses (DCA) were performed to evaluate clinical usefulness of the models.ResultsThe margin was considered as an independent predictor (p < 0.05). A total of 4 MRI features were selected and used to develop the radiomics signature. By incorporating the margin and radiomics signature, the developed nomogram showed the best prediction performance in the training (AUCs, margin vs. radiomics signature vs. nomogram, 0.609 vs. 0.909 vs. 0.910) and validation (AUCs, margin vs. radiomics signature vs. nomogram, 0.666 vs. 0.841 vs. 0.894) cohorts. DCA indicated potential usefulness of the nomogram model.ConclusionsThis feasibility study evaluated predictive values of multi-parametric MRI for the prediction of lung metastasis, and proposed a nomogram model to potentially facilitate the individualized treatment decision-making for STSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.