Abstract
To create a MRI-derived radiomics nomogram that combined clinicopathological factors and radiomics signature (Rad-score) for predicting disease-free survival (DFS) in patients with bladder cancer (BCa) following partial resection (PR) or radical cystectomy (RC), including lymphadenectomy (LAE). Finally, 80 patients with BCa after PR or RC with LAE were enrolled. Patients were randomly split into training (n = 56) and internal validation (n = 24) cohorts. Radiomic features were extracted from T2-weighted, dynamic contrast-enhanced, diffusion-weighted imaging, and apparent diffusion coefficient sequence. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was applied to choose the valuable features and construct the Rad-score. The DFS prediction model was built using the Cox proportional hazards model. The relationship between the Rad-score and DFS was assessed using Kaplan-Meier analysis. A radiomics nomogram that combined the Rad-score and clinicopathological factors was created for individualized DFS estimation. In both the training and validation cohorts, the Rad-score was positively correlated with DFS (P < .001). In the validation cohort, the radiomics nomogram combining the Rad-score, tumour pathologic stage (pT stage), and lymphovascular invasion (LVI) achieved better performance in DFS prediction (C-index, 0.807; 95% CI, 0.713-0.901) than either the clinicopathological (C-index, 0.654; 95% CI, 0.467-0.841) or Rad-score-only model (C-index, 0.770; 95% CI, 0.702-0.837). The Rad-score was an independent predictor of DFS for patients with BCa after PR or RC with LAE, and the radiomics nomogram that combined the Rad-score, pT stage, and LVI achieved better performance in individual DFS prediction. This study provided a non-invasive and simple method for personalized and accurate prediction of DFS in BCa patients after PR or RC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.