Abstract

To evaluate a CT-based radiomics model for identifying malignant pancreatic intraductal papillary mucinous neoplasms (IPMNs) and compare its performance with the 2017 international consensus guidelines (ICGs). We retrospectively included 194 consecutive patients who underwent surgical resection of pancreatic IPMNs between January 2008 and December 2020. Surgical histopathology was the reference standard for diagnosing malignancy. Using radiomics features from preoperative contrast-enhanced CT, a radiomics model was built with the least absolute shrinkage and selection operator by a five-fold cross-validation. CT and MR images were independently reviewed based on the 2017 ICGs by two abdominal radiologists, and the performances of the 2017 ICGs and radiomics model were compared. The areas under the curve (AUCs) were compared using the DeLong method. A total of 194 patients with pancreatic IPMNs (benign, 83 [43%]; malignant, 111 [57%]) were chronologically divided into training (n = 141; age, 65 ± 8.6years; 88 males) and validation sets (n = 53; age, 66 ± 9.7years; 31 males). There was no statistically significant difference in the diagnostic performance of the 2017 ICGs between CT and MRI (AUC, 0.71 vs. 0.71; p = 0.93) with excellent intermodality agreement (k = 0.86). In the validation set, the CT radiomics model had higher AUC (0.85 vs. 0.71; p = 0.038), specificity (84.6% vs. 61.5%; p = 0.041), and positive predictive value (84.0% vs. 66.7%; p = 0.044) than the 2017 ICGs. The CT radiomics model exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. Compared with the radiologists' evaluation based on the 2017 international consensus guidelines, the CT radiomics model exhibited better diagnostic performance in classifying malignant intraductal papillary mucinous neoplasms. • There is a paucity of comparisons between the 2017 international consensus guidelines (ICGs) and radiomics models for malignant intraductal papillary mucinous neoplasms (IPMNs). • The CT radiomics model developed in this study exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. • The radiomics model may serve as a valuable complementary tool to the 2017 ICGs, potentially allowing a more quantitative assessment of IPMNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call