Abstract
In breast cancer diagnosis and treatment, non-invasive prediction of axillary lymph node (ALN) metastasis can help avoid complications related to sentinel lymph node biopsy. This study aims to develop and evaluate machine learning models using radiomics features extracted from diffusion-weighted whole-body imaging with background signal suppression (DWIBS) examination for predicting the ALN status. A total of 100 patients with histologically proven, invasive, clinically N0 breast cancer who underwent DWIBS examination consisting of short tau inversion recovery (STIR) and DWIBS sequences before surgery were enrolled. Radiomic features were calculated using segmented primary lesions in DWIBS and STIR sequences and were divided into training (n = 75) and test (n = 25) datasets based on the examination date. Using the training dataset, optimal feature selection was performed using the least absolute shrinkage and selection operator algorithm, and the logistic regression model and support vector machine (SVM) classifier model were constructed with DWIBS, STIR, or a combination of DWIBS and STIR sequences to predict ALN status. Receiver operating characteristic curves were used to assess the prediction performance of radiomics models. For the test dataset, the logistic regression model using DWIBS, STIR, and a combination of both sequences yielded an area under the curve (AUC) of 0.765 (95% confidence interval: 0.548-0.982), 0.801 (0.597-1.000), and 0.779 (0.567-0.992), respectively, whereas the SVM classifier model using DWIBS, STIR, and a combination of both sequences yielded an AUC of 0.765 (0.548-0.982), 0.757 (0.538-0.977), and 0.779 (0.567-0.992), respectively. Use of machine learning models incorporating with the quantitative radiomic features derived from the DWIBS and STIR sequences can potentially predict ALN status.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.