Abstract
We aimed to evaluate the predictive significance of forkhead box protein 3 (FOXP3) expression levels among individuals with clear cell renal carcinoma (ccRCC) and establish a radiomics model for predicting FOXP3 expression. 430 patients with ccRCC were included in the gene-based prognostic analyses; 100 samples were used for radiomics feature generation, model development, and evaluation. A gradient boosting machine was employed to model the selected radiomics features. The developed model generated radiomics scores (RS) that predicted FOXP3 expression. The FOXP3 prognostic model combining imaging features was applied for survival and clinical indicator correlation analyses. FOXP3 was highly expressed in patients with ccRCC and served as an independent predictive marker (hazard ratio [HR]=2.357, 95% CI [confidence interval]: 1.582-3.511, p<0.001). The radiomics model formed by three radiomics characteristics was identified as a strong prognostic indicator of overall survival (OS). The predictive power of the model was commendable (areas under the curve: 0.835 and 0.809 for training and validation sets, respectively). Significant between-group variations in RS distribution were identified, as indicated by gene expression levels (p<0.05). Disparities were observed in pathological stage, pharmaceutical therapy, and neoplasm status between low and high RS cohorts (p<0.001). Kaplan-Meier curves revealed a significant correlation between increased RS and decreased OS (p=0.001), which was also observed in the multivariate analyses (HR=3.411, 95% CI: 1.039-11.196, p=0.043). Prognostic outcome of ccRCC is closely linked to FOXP3 expression level. Computed tomography-based radiomics shows promise for prognostic prediction in ccRCC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.