Abstract
White matter (WM) lesions can be classified into contrast enhancement lesions (CELs), iron rim lesions (IRLs), and non-iron rim lesions (NIRLs) based on different pathological mechanism in relapsing-remitting multiple sclerosis (RRMS). The application of radiomics established by T2-FLAIR to classify WM lesions in RRMS is limited, especially for 3-class classification among CELs, IRLs, and NIRLs. A total of 875 WM lesions (92 CELs, 367 IRLs, 416 NIRLs) were included in this study. The 2-class classification was only performed between IRLs and NIRLs. For the 2- and 3-class classification tasks, all the lesions were randomly divided into training and testing sets with a ratio of 8:2. We used least absolute shrinkage and selection operator (LASSO), reliefF algorithm, and mutual information (MI) for feature selection, then eXtreme gradient boosting (XGBoost), random forest (RF), and support vector machine (SVM) were used to establish discrimination models. Finally, the area under the curve (AUC), accuracy, sensitivity, specificity, and precision were used to evaluate the performance of the models. For the 2-class classification model, LASSO classifier with RF model showed the best discrimination performance with the AUC of 0.893 (95% CI: 0.838-0.942), accuracy of 0.813, sensitivity of 0.833, specificity of 0.781, and precision of 0.851. However, the 3-class classification model of LASSO with XGBoost displayed the highest performance with the AUC of 0.920 (95% CI: 0.887-0.950), accuracy of 0.796, sensitivity of 0.839, specificity of 0.881, and precision of 0.846. Radiomics models based on T2-FLAIR images have the potential for discriminating among CELs, IRLs, and NIRLs in RRMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.