Abstract
To develop and validate a model for predicting suboptimal debulking surgery (SDS) of serous ovarian carcinoma (SOC) using radiomics method, clinical and MRI features. 228 patients eligible from institution A (randomly divided into the training and internal validation cohorts) and 45 patients from institution B (external validation cohort) were collected and retrospectively analyzed. All patients underwent abdominal pelvic enhanced MRI scan, including T2-weighted imaging fat-suppressed fast spin-echo (T2FSE), T1-weighteddual-echomagnetic resonanceimaging (T1DEI), diffusion weighted imaging (DWI), and T1 with contrast enhancement (T1CE). We extracted, selected and eliminated highly correlated radiomic features for each sequence. Then, Radiomic models were made by each single sequence, dual-sequence (T1CE + T2FSE), and all-sequence, respectively. Univariate and multivariate analyses were performed to screen the clinical and MRI independent predictors. The radiomic model with the highest area under the curve (AUC) was used to combine the independent predictors as a combined model. The optimal radiomic model was based on dual sequences (T2FSE + T1CE) among the five radiomic models (AUC = 0.720, P < 0.05). Serum carbohydrate antigen 125, the relationship between sigmoid colon/rectum and ovarian mass or mass implanted in Douglas' pouch, diaphragm nodules, and peritoneum/mesentery nodules were considered independent predictors. The AUC of the radiomic-clinical-radiological model was higher than either the optimal radiomic model or the clinical-radiological model in the training cohort (AUC = 0.908 vs. 0.720/0.854). The radiomic-clinical-radiological model has an overall algorithm reproducibility and may help create individualized treatment programs and improve the prognosis of patients with SOC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.