Abstract
Reliable prediction of volume doubling time (VDT) is essential for the personalized management of pulmonary ground-glass nodules (GGNs). We aimed to determine the optimal VDT prediction method by comparing different machine learning methods only based on the baseline chest computed tomography (CT) images. Seven classical machine learning methods were evaluated in terms of their stability and performance for VDT prediction. The VDT, calculated by the preoperative and baseline CT, was divided into 2 groups with a cutoff value of 400 days. A total of 90 GGNs from 3 hospitals constituted the training set, and 86 GGNs from the fourth hospital served as the external validation set. The training set was used for feature selection and model training, and the validation set was used to evaluate the predictive performance of the model independently. The eXtreme Gradient Boosting showed the highest predictive performance (accuracy: 0.890±0.128 and area under the ROC curve (AUC): 0.896±0.134), followed by the neural network (NNet) (accuracy: 0.865±0.103 and AUC: 0.886±0.097). While regarding stability, the NNet showed the highest robustness against data perturbation (relative SDs [%] of mean AUC: 10.9%). Therefore, the NNet was chosen as the final model, achieving high accuracy of 0.756 in the external validation set. The NNet is a promising machine learning method to predict the VDT of GGNs, which would assist in the personalized follow-up and treatment strategies for GGNs reducing unnecessary follow-up and radiation dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.