Abstract
Patients with T4 obstructive colorectal cancer (OCC) have a high mortality rate. Therefore, an accurate distinction between T4 and T1-T3 (NT4) in OCC is an important part of preoperative evaluation, especially in the emergency setting. This paper introduces three models of radiomics, deep learning, and deep learning-based radiomics to identify T4 OCC. We established a dataset of computed tomography (CT) images of 164 patients with pathologically confirmed OCC, from which 2537 slides were extracted. First, since T4 tumors penetrate the bowel wall and involve adjacent organs, we explored whether the peritumoral region contributes to the assessment of T4 OCC. Furthermore, we visualized the radiomics and deep learning features using the t-distributed stochastic neighbor embedding technique (t-SNE). Finally, we built a merged model by fusing radiomic features with deep learning features. In this experiment, the performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). In the test cohort, the AUC values predicted by the radiomics model in the dilated region of interest (dROI) was 0.770. And the AUC value of the deep learning model with the patches extended 20-pixel reached 0.936. Combining the characteristics of radiomics and deep learning, our method achieved an AUC value of 0.947 in the T4 and non-T4 (NT4) classification, and increased the AUC value to 0.950 after the addition of clinical features. The prediction results of our merged model of deep learning radiomics outperformed the deep learning model and significantly outperformed the radiomics model. The experimental results demonstrate that combining the peritumoral region improves the prediction performance of the radiomics model and the deep learning model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.