Abstract

PurposeColorectal cancer is usually accompanied by liver metastases. The prediction of patient evolution is essential for the choice of the appropriate therapy. The aim of this study is to develop and evaluate machine learning models to predict KRAS gene mutations and 2-year disease-specific mortality from medical images. MethodsClinical and follow-up information was collected from patients with metastatic colorectal cancer who had undergone computed tomography prior to liver resection. The dominant liver lesion was segmented in each scan and radiomic features were extracted from the volumes of interest. The 65% of the cases were employed to perform feature selection and to train machine learning algorithms through cross-validation. The best performing models were assembled and evaluated in the remaining cases of the cohort. ResultsFor the mortality model development, 101 cases were used as training set (64 alive, 37 deceased) and 35 as test set (22 alive, 13 deceased); while for KRAS mutation models, 55 cases were used for training (31 wild-type, 24 mutated) and 30 for testing (17 wild-type, 13 mutated). The ensemble of top performing models resulted in an area under the receiver operating characteristic curve of 0.878 for mortality and 0.905 for KRAS prediction. ConclusionsPredicting the prognosis of patients with metastatic colorectal cancer is useful for making timely decisions about the best treatment options. This study presents a noninvasive method based on quantitative analysis of baseline images to identify factors influencing patient outcomes, with the aim of incorporating these tools as support systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call