Abstract
Recently, radiomics and deep learning have gained attention as methods for computerized image analysis. Radiomics and deep learning can perform diagnostic or predictive tasks using high-dimensional image-derived features and have the potential to expand the capabilities of liver imaging beyond the scope of traditional visual image analysis. Recent research has demonstrated the potential of these techniques in various fields of liver imaging, including staging of liver fibrosis, prognostication of malignant liver tumors, automated detection and characterization of liver tumors, automated abdominal organ segmentation, and body composition analysis. However, because most of the previous studies were preliminary and focused mainly on technical feasibility, further clinical validation is required for the application of radiomics and deep learning in clinical practice. In this review, we introduce the technical aspects of radiomics and deep learning and summarize the recent studies on the application of these techniques in liver radiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.