Abstract

Radiomics has a long-standing history in breast imaging with computer-aided detection (CAD) for screening mammography developed in the late 20th century. Although conventional CAD had widespread adoption, the clinical benefits for experienced breast radiologists were debatable due to high false-positive marks and subsequent increased recall rates. The dramatic growth in recent years of artificial intelligence-based analysis, including machine learning and deep learning, has provided numerous opportunities for improved modern radiomics work in breast imaging. There has been extensive radiomics work in mammography, digital breast tomosynthesis, MRI, ultrasound, PET-CT, and combined multimodality imaging. Specific radiomics outcomes of interest have been diverse, including CAD, prediction of response to neoadjuvant therapy, lesion classification, and survival, among other outcomes. Additionally, the radiogenomics subfield that correlates radiomics features with genetics has been very proliferative, in parallel with the clinical validation of breast cancer molecular subtypes and gene expression assays. Despite the promise of radiomics, there are important challenges related to image normalization, limited large unbiased data sets, and lack of external validation. Much of the radiomics work to date has been exploratory using single-institution retrospective series for analysis, but several promising lines of investigation have made the leap to clinical practice with commercially available products. As a result, breast radiologists will increasingly be incorporating radiomics-based tools into their daily practice in the near future. Therefore, breast radiologists must have a broad understanding of the scope, applications, and limitations of radiomics work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call