Abstract
BackgroundMedulloblastoma (MB) is a common central nervous system tumor in children with extensive heterogeneity and different prognoses. This study aimed to classify the Ki-67 index in MB with radiomic characteristics based on multi-parametric magnetic resonance imaging to guide treatment and assess the prognosis of patients.MethodsThree sequences of T1W, CE-T1W, and T2W were used as test data. Two experienced radiologists manually segmented the tumors according to T2W images from 90 patients. The patients were divided into training and test sets at a ratio of 7:3, and 833 dimensional image features were extracted for each patient. Five models were trained using the feature set selected in three ways. Finally, the area under the curve (AUC) and accuracy (ACC) were used on the test set to evaluate the performance of the different models.ResultsA random forest (RF) model combining three sequence features achieved the best performance (ACC: 0.771, 95% CI: 0.727 to 0.816; AUC: 0.697, 95% CI: 0.614 to 0.78). The voting model that combined a RF and a support vector machine (SVM) had higher performance than the other models (ACC: 0.796, 95% CI: 0.76 to 0.833; AUC: 0.689, 95% CI: 0.615 to 0.763). The best prediction model that used only one sequence feature was voting in the T2W sequence (ACC: 0.736, 95% CI: 0.705 to 0.766; AUC: 0.636, 95% CI: 0.585 to 0.688). The ensemble model was better than the single training model, and a multi-sequence combination was better than a single sequence prediction. The multiple feature selection methods were better than a combination of the two methods.ConclusionsA model obtained by machine learning could help doctors predict the Ki-67 values of patients more efficiently to make targeted judgments for subsequent treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.