Abstract

Clinicopathological characteristics including histological subtypes, tumour grades and International Federation of Gynecology and Obstetrics (FIGO) stages are crucial factors in the clinical decision for cervical carcinoma (CC). The purpose of this study was to evaluate the ability of T2-weighted imaging (T2WI) and diffusion kurtosis imaging (DKI) radiomics in differentiating clinicopathological characteristics of CC. One hundred and seventeen histologically confirmed CC patients (mean age 56.5 ± 14.0 years) with pre-treatment magnetic resonance imaging were retrospectively reviewed. DKI was acquired with 4 b-values (0-1500 s/mm2). Volumes of interest were contoured around the tumours on T2WI and DKI. Radiomic features including shape, first-order and grey-level co-occurrence matrix with wavelet transforms were extracted. Intraclass correlation coeffient between 2 radiologists was used for features reduction. Feature selection was achieved by elastic net and minimum redundancy maximum relevance. Selected features were used to build random forest (RF) models. The performances for differentiating histological subtypes, tumour grades and FIGO stages were assessed by receiver operating characteristic analysis. Area under the curves (AUCs) for T2WI-only RF models for discriminating histological subtypes, tumour grades and FIGO stages were 0.762, 0.686, and 0.719. AUCs for DWI-only models were 0.663, 0.645, and 0.868, respectively. AUCs of the combined T2WI and DKI models were 0.823, 0.790, and 0.850, respectively. T2WI and DKI radiomic features could differentiate the clinicopathological characteristics of CC. A combined model showed excellent diagnostic discrimination for histological subtypes, while a DKI-only model presented the best performance in differentiating FIGO stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call