Abstract

The purpose of this study was to investigate the robustness of different radiography radiomic features over different radiologic parameters including kV, mAs, filtration, tube angles, and source skin distance (SSD). A tibia bone phantom was prepared and all imaging studies was conducted on this phantom. Different radiologic parameters including kV, mAs, filtration, tube angles, and SSD were studied. A region of interest was drawn on the images and many features from different feature sets including histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet derived parameters were extracted. All radiomic features were categorized based on coefficient of variation (COV). Bland-Altman analysis also was used to evaluate the mean, standard deviation, and upper/lower reproducibility limits for radiomic features in response to variation in each testing parameters. Results on COV in all features showed that 22%, 34%, and 45% of features were most robust (COV ≤ 5%) against kV, mAs, and SSD respectively and there was no robust features against filtration and tube angle. Also, all features (100%) and 76% of which showed large variations (COV > 20%) against filtrations and tube angle respectively. Autoregressive model feature set has no robust features against all radiologic parameters. Features including sum-average, sum-entropy, correlation, mean, and percentile (50, 90, and 99) belong to co-occurrence matrix and histogram feature sets were found as most robust features. Bland-Altman analysis showed the high reproducibity of some feature sets against radiologic parameter changes. The results presented here indicated that radiologic parameters have great impacts on radiomic feature values and caution should be taken into account when work with these features. In quantitative bone studies, robust features with low COV can be selected for clinical or research applications. Reproducible features also can be obtained using Bland-Altman analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.