Abstract
AbstractOn-orbit radiometric performance of the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) is studied using the extended simultaneous nadir overpass (SNO-x) approach. Unlike the traditional SNO analysis of data in the high latitudes, this study extends the analysis to the low latitudes—in particular, over desert and ocean sites with relatively stable and homogeneous radiometric properties—for intersatellite comparisons. This approach utilizes a pixel-by-pixel match with an efficient geospatial matching algorithm to map VIIRS data into the Moderate Resolution Imaging Spectroradiometer (MODIS). VIIRS moderate-resolution bands M-1 through M-8 are compared with Aqua MODIS equivalent bands to quantify radiometric bias over the North African desert and over the ocean. Biases exist between VIIRS and MODIS in several bands, primarily because of spectral differences as well as possible calibration uncertainties, residual cloud contamination, and bidirectional reflectance distribution function (BRDF). The impact of spectral differences on bias is quantified by using the Moderate Resolution Atmospheric Transmission (MODTRAN) and hyperspectral measurements from the Earth Observing-1 (EO-1) Hyperion and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). After accounting for spectral differences and bias uncertainties, the VIIRS radiometric bias over desert agrees with MODIS measurements within 2% except for the VIIRS shortwave infrared (SWIR) band M-8, which indicates a nearly 3% bias. Over ocean, VIIRS agrees with MODIS within 2% by the end of January 2013 with uncertainty less than 1%. Furthermore, VIIRS bias relative to MODIS is also computed at the Antarctica Dome C site for validation and the result agrees well within 1% with the bias estimated using SNO-x over desert.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.